Contents

1 Insta	llation and setup	3
1.1	Prerequiste	3
1.2	Installation	3
1.3	Using the package	3
1.4	Activate your usage	4
2 Simu	Ilation Method	4
2.1	Basic design	4
2.2	Magnetization dynamics	7
2.3	External field, stray field, and magnetostatic boundary condition	8
2.4	Magnetocrystalline anisotropy	9
2.5	Magneto-Elastic interaction	10
2.6	Magnetic exchange interaction	11
2.7	Dzyaloshinskii-Moriya interaction (DMI)	11
2.8	Spin torque	11
2.9	Thermal fluctuation	12
3 Inpu	t files	13
3.1	parameterFormatted.in or alternatively parameter.in	13
3.2	islandShape.in (optional)	16
3.3	eulerAng.in (optional)	17
3.4	hExt.in (optional)	17
3.5	sExt.in (optional)	17
3.6	strain.in (optional)	18
3.7	magnt.in (optional)	19
4 Oup	ut files	19
4.1	Files generated before doing evolution	19
4.2	Files generated during evolution steps	20
5 Exar	nples	22
5.1	μMag Standard Problem #1	22
5.2	μMag Standard Problem #2	24
5.3	μMag Standard Problem #3	26
5.4	μMag Standard Problem #4	27
5.5	μMag Standard Problem #5	29
5.6	Strain-induced domain pattern in thin film	30

5.7 DMI	
5.8 Polycrystalline magnet	
5.9 Thermal fluctuation	
References	

μ-Pro[®] Mag Documentation

The μ -Pro[®] Mag program simulates the microstructure evolution of a magnet under applied external magnetic fields, applied strain/stress, and/or electric current. The temporal evolution and spatial profile of magnetization and energies are evaluated.

1 Installation and setup

1.1 Prerequiste

 μ -Mag is built with Intel parallel studio cluster edition, and Intel mpi is required to run the program (**libmpi.so.12** and **libmpifort.so.12** are necessary). With Intel mpi installed, if things are not working automatically, you can use the **ldd** command to check the dynamic libraries linked with the executable, and add the correct path for the missing shared library by export **\$LD_LIBRARY_PATH**.

1.2 Installation

To install the package, simply run the install.sh script. The script takes one argument, that is the μ -Pro[®] install path, if no argument is passed, then a default folder **/opt/MUPRO** will be used. For example, if you execute this command **./install.sh /usr/local/MUPRO**. The install.sh script will first create the install directory **/usr/local/MUPRO**, next copy all the contents in your current distribution folder into the install directory, and then add several lines to your **~/.bashrc** file to setup the environment variable **MUPROROOT**, and create alias to the executable for easier usage.

1.3 Using the package

If the package is installed correctly, you should have a set of customized command defined in the \sim /.bashrc start with mupro- or copy-mupro-. These commands enable you to execute the program without copy the .exe around.

1.4 Activate your usage

To register your copy of the program, we need the following information:

- Hostname. Be careful that this may not be the host name you used to get access to your linux server, but the host name of the login node you get connected to. For example, I can connect to the Penn State server through ssh xuc116@aci-b.aci.ics.psu.edu, but due to there are multiple login nodes, I'm actually connected to a node called aci-004.aci.production.int.aci.ics.psu.edu. This is the host name you should provide to us, rather than the aci-b.aci.ics.psu.edu one. If there are more than one hostname that you may get connected to you can supply us with a list of them. You can easily obtain the hostname of your server or computer by execute echo \$HOSTNAME in the linux terminal.
- 2. Username. The user name you want to grant access to use μ -Mag. You can find the user name by typing **echo \$USER** in the terminal. Note if you apply for the group license rather than individual one, you should provide the group name instead of user name.
- 3. Groupname. The group of users that you want to grant access to use μ -Mag. You can find all of the group you belong to by executing the **id** command in terminal.
- 4. Ip address. You can obtain your server's ip address by typing **curl ipinfo.io/ip** in terminal. Same as hostname, if there are more than one ip address that you may get connected to, you can provide us with a list of them.

2 Simulation Method

2.1 Basic design

The total size of the simulation system is $l_1 \times l_2 \times l_3$, which is evenly discretized into $n_1 \times n_2 \times n_3$ cuboid grids, i.e., the size of each simulation grid is $\Delta l_1 = l_1/n_1$, $\Delta l_2 = l_2/n_2$, and $\Delta l_3 = l_3/n_3$.

The simulation system can be one of the following types: Bulk, 3-D; Bulk, 2-D; Bulk, 1-D; Thin film, 3-D; Thin film, 2-D; Island-on-substrate, 3-D; Island-on-substrate, 2-D; Freestanding finite-size magnet, 3-D; Freestanding finite-size magnet, 2-D; Freestanding finite-size magnet, 1-D.

A set of additional parameters are used to specify the system, which may include the film thickness n_f , island (or finite-size magnet) thickness n_{i3} , island (or finite-size magnet) lengths n_{i1} and n_{i2} , and substrate thickness n_s . Schematics of all types of systems and corresponding parameters are listed below. All the parameters are in the unit of grid numbers.

Table 2.1 Types of systems									
System type and schematics	Parameters specifying the system	Value of parameters							
Bulk, 3-D	n_1	Length of the system along x_1 direction							
	n_2	Length of the system along x_2 direction							
	n ₃	Length of the system along x_3 direction							
	n _f	0							
n ₃ Magnet n ₂	n _{i3}	0							
Bulk, 2-D	n_1	Length of the system along x_1 direction							
	n_2	1*							
	<i>n</i> ₃	Length of the system along x_3 direction							
Magnet	n_f	0							
	<i>n_i</i> 3	0							
		Length of the system along y direction							
Buik, I-D	n_1								
$ \xrightarrow{n_1} $	<u>n2</u>	1							
Magnet	<i>n</i> ₃	<u> </u>							
	ng ng	0							
Thin film 3 D	<i>n</i> ₁₃	Length of the system along redirection							
	<i>n</i> 1	Length of the system along x_1 direction							
Vacuum	<u>n2</u>	Length of the system along x_2 direction							
	n ₃	Thickness of the film along re direction							
n ₃ n _f Magnet n ₁ n ₂ Substrate n ₁	n _s	Thickness of the substrate along x_3 direction							
Thin film, 2-D	n_1	Length of the system along x_1 direction							
Vacuum	n_2	1*							
1	<i>n</i> ₃	Length of the system along x_3 direction							
Magnet	n_f	Thickness of the film along x_3 direction							
n_3 n_f n_s n_1 Substrate	n _s	Thickness of the substrate along x_3 direction							
Island(s)-on-substrate, 3-D	n_1	Length of the system along x_1 direction							
	n_2	Length of the system along x_2 direction							

 Table 2.1 Types of systems

	n_3	Length of the system along x_3 direction
Vacuum	n_f	0
	n_{i3}	Thickness of the island along x_3 direction
n _{it} n _{it}	n_s	Thickness of the substrate along x_3 direction
n ₃ Magnet	C_{Island}	1
n ₁₃	n_{i1}	Length of the island along x_1 direction
Substrate n1	n_{i2}	Length of the island along x_2 direction
n_{s}		
Island(s)-on-substrate, 2-D	n_1	Length of the system along x_1 direction
$\int n_{i1}$ Vacuum	n_2	1*
	n_3	Length of the system along x_3 direction
Magnet	n_f	0
n_3 n_3	n _i 3	Thickness of the island along x_3 direction
	n_s	Thickness of the substrate along x_3 direction
$n_s = n_1$ Substrate	C_{Island}	1
✓	n_{i1}	Length of the island along x_1 direction
	n_{i2}	1*
Freestanding finite-size magnet, 3-D	n_1	Length of the system along x_1 direction
	n_2	Length of the system along x_2 direction
Vacuum	<i>n</i> ₃	Length of the system along x_3 direction
	nf	0
nin nin	n _i 3	Thickness of the magnet along x_3 direction
Magnet n	n_s	0
	C_{Island}	1
	n_{i1}	Length of the magnet along x_1 direction
	n_{i2}	Length of the magnet along x_2 direction
Freestanding finite-size magnet, 2-D	n_1	Length of the system along x_1 direction
Vacuum	n_2	Length of the system along x_2 direction
	<i>n</i> ₃	1
na Magnet	n_f	0
<i>n</i> ₂ <i>i</i>	n_{i3}	1
n_{i1}	n_s	0
n_1	C_{Island}	1
	n_{i1}	Length of the magnet along x_1 direction
	n_{i2}	Length of the magnet along x_2 direction
Freestanding finite-size magnet, 1-D	n_1	Length of the system along x_1 direction
n _{i1} Vacuum	n_2	1*
<pre></pre>	<i>n</i> ₃	1
Magnet	n_f	0
	n_{i3}	1
	n_s	0
	C_{Island}	1
	n_{i1}	Length of the magnet along x_1 direction
	n_{i2}	1*

* There's a limit of $n_2 \ge 2$ in simulation running parallel with multiple processors, where $n_2 (= n_{i2}) = 2$ is recommended in quasi- 2-D or 1-D systems.

 C_{Island} on input specifies whether the in-plane (i.e., in x_1 - x_2 plane) shape of an island or a freestanding finite-size magnet be a rectangle (C_{Island} =1), an ellipse (C_{Island} =2), or any other arbitrary shape (C_{Island} =0), respectively. On setting C_{Island} =2, n_{i1} and n_{i2} would specify the major or minor axes of the ellipse along x_1 and x_2 directions, respectively. On setting C_{Island} =0, an arbitrary

in-plane shape defined in an input file *islandShape.in* would be adopted (see Section 3 for details). Cases for $C_{Island}=2$ and $C_{Island}=0$ are omitted in Table 2.1.

For thin films and island(s)-on-substrate systems, the thickness of the substrate should be at least 11 grids, i.e., $n_s \ge 11$. At all actual surfaces of a magnet, a number of at least 4 stacking layers of vacuum is needed, if one or more of the following components is considered: (demagnetizing) stray field, magnetoelastic interaction, exchange interaction, or Dzyaloshinskii-Moriya interaction (DMI). For example, for simulating a cuboid island with a length of n_{i1} grids along x_1 direction, n_1 should be chosen following $(n_1 - n_{i1})/2 \ge 4$.

Spatial distribution of the local magnetization vector $\mathbf{M}(\mathbf{x}) = M_s \mathbf{m}(\mathbf{x})$ is used to describe magnetic domain structure, where \mathbf{x} is the position vector, M_s is the spontaneous magnetization, and \mathbf{m} is the normalized magnetization. The SI units are adopted in μ -Pro[®] Mag and throughout this documentation.

A set of Euler angle arrays including $\varphi(\mathbf{x})$, $\theta(\mathbf{x})$, and $\psi(\mathbf{x})$ are introduced to treat a polycrystal. These angle arrays rotate the system coordinate axes to the local crystallographic coordinate axes. The transformation matrix **a** from the system coordinates to the local crystallographic coordinates is

$$\mathbf{a} = \begin{pmatrix} \cos\varphi\cos\psi - \cos\theta\sin\varphi\sin\psi & \cos\theta\cos\varphi\sin\psi + \sin\varphi\cos\psi & \sin\theta\sin\psi \\ -\cos\theta\sin\varphi\cos\psi - \cos\varphi\sin\psi & \cos\theta\cos\varphi\cos\psi - \sin\varphi\sin\psi & \sin\theta\cos\psi \\ \sin\theta\sin\varphi & -\sin\theta\cos\varphi & \cos\theta \end{pmatrix}$$
(1)

For example, transformation of a vector **v** from the system coordinates to local crystallographic coordinates follows $v_{i'} = a_{ij}v_j$ (*i*,*j*=1,2,3). Here a prime (°) in a subscript following an index 1, 2, or 3 indicates a component of a vector or a tensor in the local crystalline coordinate, e.g., m_1 (**x**) is the component of **m**(**x**) along the local crystallographic coordinate axis x_1 ' at position **x**. Note that Einstein summation convention is adopted throughout the documentation.

2.2 Magnetization dynamics

Temporal evolution of **m** is governed by the Landau-Lifshitz-Gilbert (LLG) equation, i.e.,

$$\frac{\partial \mathbf{m}}{\partial t} = \tau = -\frac{\gamma_0}{1+\alpha^2} \left(\mathbf{m} \times \mathbf{H}_{\rm eff} + \alpha \mathbf{m} \times \left(\mathbf{m} \times \mathbf{H}_{\rm eff} \right) \right), \tag{2}$$

where *t* is the time, τ is the total torque, α is the damping constant, γ_0 is the gyromagnetic ratio in $m/(A \cdot s)$. **H**_{eff} is the effective magnetic field, which includes the following contributions:

- External field **H**_{ext};
- Magnetic stray field or demagnetizing field **H**_d;
- Magnetocrystalline anisotropy field **H**_{anis};
- Magnetoelastic field **H**_{elas};
- Exchange interaction field **H**_{exch};

- Dzyaloshinskii-Moriya interaction (DMI) field **H**_{DMI};
- Effective field from spin-transfer torque or spin-orbit torque H_{ST},
- Thermal fluctuation field **H**_{therm};

as below,

$$\mathbf{H}_{\text{eff}} = \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{stray}} + \mathbf{H}_{\text{anis}} + \mathbf{H}_{\text{elas}} + \mathbf{H}_{\text{exch}} + \mathbf{H}_{\text{DMI}} + \mathbf{H}_{\text{ST}} + \mathbf{H}_{\text{therm}}.$$
 (3)

 \mathbf{H}_{eff} is given by

$$\mathbf{H}_{\rm eff} = -\frac{1}{\mu_0} \frac{\delta F[\mathbf{M}]}{\delta \mathbf{M}} + \mathbf{H}_{\rm therm} \,. \tag{4}$$

where $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$ is the vacuum permeability, $F[\mathbf{M}] = \int f[\mathbf{M}] d\mathbf{x}^3$ is the Helmholtz free energy of the system, as a functional of the magnetization distribution, where *f* is the volume density of the Helmholtz free energy, given by

$$f = f_{\text{ext}} + f_{\text{stray}} + f_{\text{anis}} + f_{\text{elas}} + f_{\text{exch}} + f_{\text{DMI}} + f_{\text{ST}}.$$
(5)

 μ -Pro[®] Mag provides two numerical methods for solving the LLG equation:

- IGS, implicit Gauss-Seidel projection method[1] implemented with Fourier-Spectral approach[2][3]. Contribution of the short-range interaction \mathbf{H}_{exch} is implicitly considered, while other contributions to \mathbf{H}_{eff} are explicitly evaluated.
- RK4, the Runge-Kutta method. All contributions to \mathbf{H}_{eff} are explicitly evaluated.

The time during magnetization evolution is discretized into time steps with a fixed duration Δt , i.e., $t = k_t \Delta t$ where k_t is the step number. The recommended range for the value of Δt is $10^{-14} \text{ s} \le \Delta t \le 10^{-12} \text{ s}$, for numerical stability and accuracy.

2.3 External field, stray field, and magnetostatic boundary condition

The magnetic field **H** consists of external field and magnetostatic stray field, i.e., $\mathbf{H} = \mathbf{H}_{ext} + \mathbf{H}_{stray}$. In μ -Pro[®] Mag, the external field \mathbf{H}_{ext} is considered spatially uniform in the simulation system, in the unit of A/m. The volume density of external field energy is given by

$$f_{\rm ext} = -\mu_0 M_S \mathbf{H}_{\rm ext} \cdot \mathbf{m}.$$
 (6)

 μ -Pro[®] Mag provides an option of choosing \mathbf{H}_{ext} on input as a combination of a DC and an AC component, i.e., $\mathbf{H}_{\text{ext}} = \mathbf{H}_{\text{DC}} + \mathbf{H}_{\text{AC}} \sin(2\pi f_{\text{AC}} \cdot t)$

The magnetostatic stray field energy is given by

$$F_{\text{stray}} = \int_{\text{entire space}} \frac{1}{2} \mu_0 \mathbf{H}_{\text{stray}}^2 d\mathbf{x}^3 = \int_{\text{magnet}} -\frac{1}{2} \mu_0 M_S \mathbf{H}_{\text{stray}} \cdot \mathbf{m} d\mathbf{x}^3.$$
(7)

The energy density is taken as

$$f_{\text{stray}} = -\frac{1}{2} \,\mu_0 M_S \mathbf{H}_{\text{stray}} \cdot \mathbf{m} \,. \tag{8}$$

 $\mathbf{H}_{\text{stray}}$ is obtained at each evolution step by solving the magnetostatic equilibrium equation

$$\nabla \cdot (\mathbf{H} + \mathbf{M}) = 0. \tag{9}$$

Three types of boundary condition are used for $\mathbf{H}_{\text{stray}}$. In a period boundary condition, the simulation system is considered as a building block that appears repeatedly appear in 3-D space, and the stray field is expressed as $\mathbf{H}_{\text{stray}} = -\nabla \phi + \mathbf{N}_D \overline{\mathbf{M}}$, where ϕ is the magnetic scalar potential with a periodic boundary condition solved using the Fourier spectral method, as given in Ref. [3], the 3×3 symmetric matrix \mathbf{N}_D is the demagnetizing factor which depends only on the macroscopic shape of the actual sample (not the shape of the simulation system, e.g., see Table 2.2), and $\overline{\mathbf{M}}$ is the average magnetization of the simulation system. In a finite-size boundary condition, space outside the simulation system is considered to be filled by vacuum without magnetization, electric charge, or current etc., and the stray field is solved based on convolution theorem accelerated by FFT[4], without explicitly utilizing demagnetizing factors. The third type of boundary condition is a mixed type which considers periodic boundaries along in-plane directions x_1 and x_2 , and finite-size boundaries along the out-of-plane direction x_3 , which is solved using Fourier spectral method, without utilizing demagnetizing factors. Table 2.2 lists the recommended stray field boundary conditions and (when applicable) demagnetizing factors for typical types of systems.

System type	Boundary condition	(N_{D1}, N_{D2}, N_{D3})						
Bulk (periodic)	Periodic	(0, 0, 0) or $(1/3, 1/3, 1/3)$, or calculated based						
		on the macroscopic shape of the sample						
Thin film (periodic in-plane)	Mixed	/						
Island(s)-on-substrate arrays	Mixed	/						
(periodic in-plane)								
Single group of island(s)-on-	Finite-size	/						
substrate								
Freestanding finite-size magnet	Finite-size	/						

Table 2.2 Recommended stray field boundary condition and demagnetizing factor

2.4 Magnetocrystalline anisotropy

Two types of magnetocrystalline anisotropy are considered, the cubic anisotropy with magnetic easy axes along <100>, <110>, or <111> crystal axes, and the uniaxial anisotropy in ultra-thin films with a magnetic easy/hard axis perpendicular to the film plane. The volume density of magnetocrystalline anisotropy energy is given by Cubic anisotropy

$$f_{\text{anis}} = K_1 \left(m_{1'}^2 m_{2'}^2 + m_{1'}^2 m_{3'}^2 + m_{2'}^2 m_{3'}^2 \right) + K_2 m_{1'}^2 m_{2'}^2 m_{3'}^2 + K_3 \left(m_{1'}^4 m_{2'}^4 + m_{1'}^4 m_{3'}^4 + m_{2'}^4 m_{3'}^4 \right)$$
(10A)

Uniaxial anisotropy

$$f_{\text{anis}} = K_1 \left(1 - m_3^2 \right) + K_2 \left(1 - m_3^2 \right)^2$$
(10B)

where ${\bf K}$ is the magnetocrystalline anisotropy coefficient.

The anisotropy effective field is calculated as

$$\mathbf{H}_{\text{anis}} = -\frac{1}{\mu_0 M_s} \frac{\partial f_{\text{anis}}}{\partial \mathbf{m}}$$
(11)

2.5 Magneto-Elastic interaction

The elastic energy density is given by

$$f_{\text{elas}} = \frac{1}{2} \mathbf{c} \left(\mathbf{\varepsilon} - \mathbf{\varepsilon}^0 \right)^2 \tag{12}$$

where **c** is the elastic stiffness tensor, $\boldsymbol{\epsilon}$ is the strain, and $\boldsymbol{\epsilon}^0$ is the stress-free strain calculated as

$$\boldsymbol{\varepsilon}_{i'j'}^{0} = \begin{cases} \frac{3}{2} \lambda_{100} \left(m_{i'}^{2} - \frac{1}{3} \right) & (i' = j') \\ \frac{3}{2} \lambda_{111} m_{i'} m_{j'} & (i' \neq j') \end{cases}$$
(13)

where λ_{100} and λ_{111} are saturation magnetostriction along <100> and <111> crystalline axes, respectively.

The magnetoelastic effective field is written as

$$\mathbf{H}_{\text{elas}} = -\frac{1}{\mu_0 M_s} \frac{\partial f_{\text{elas}}}{\partial \mathbf{m}} = \frac{2\mathbf{\sigma}}{\mu_0 M_s} \cdot \frac{\partial \mathbf{\epsilon}^0}{\partial \mathbf{m}}$$
(14)

where $\boldsymbol{\sigma}$ is the stress field given by $\boldsymbol{\sigma} = \mathbf{c} \left(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^0 \right)$.

Assuming that the elastic equilibrium condition holds at each evolution step, the strain and stress are obtained at each evolution step through solving the mechanical equilibrium equation

$$\nabla \cdot \mathbf{\sigma} = 0 \tag{15}$$

using a Fourier spectral method[5][6] based on Khachaturyan's elasticity theory[7]. Table 2.3 summarizes the boundary conditions implemented in typical types of systems. Examples showing the influence of elastic boundary condition on the magnetic domain structure can be found in Ref.[8].

 Table 2.3 Elastic boundary conditions

	2
System type	Boundary condition
Bulk (periodic)	3-d periodic, with specified applied external strain $\boldsymbol{\epsilon}_{ext}$ or stress $\boldsymbol{\sigma}_{ext}$
Thin film (periodic in-plane)	Thin film boundary condition (see Ref. [5] for details), with specified in-
	plane substrate strain $\boldsymbol{\varepsilon}_{ext}$ (i.e., $\boldsymbol{\varepsilon}_{ext11}$, $\boldsymbol{\varepsilon}_{ext22}$, and $\boldsymbol{\varepsilon}_{ext12}$)
Island(s)-on-substrate	Periodic in-plane, stress-free island surfaces, with specified in-plane
	substrate strain ε_{ext} (i.e., ε_{ext11} , ε_{ext22} , and ε_{ext12})
Freestanding finite-size magnet	Stress-free

An iterative Fourier-Spectral method is used (see details in Ref. [6]) to solve Eq. 15 in elastically inhomogeneous systems (that is, spatially variant \mathbf{c}), including:

- Island-on-substrate system
- freestanding finite-size systems
- Polycrystals

• Film-on-substrate system where the magnet and substrate have different elastic stiffness. A convergence of the iterative approximation is claimed when the difference of total elastic energy between adjacent recursion loops is within a tolerance value Δe (arbitrary unit), i.e., $\left|F_{elas}^{(n)} - F_{elas}^{(n-1)}\right| \leq \Delta e$, where $F_{elas}^{(n)}$ is the total elastic energy of the *n*-th iterative approximation. If convergence is not reached after the allowed maximum number n_{Recurs} of recursion loops, the program claims to fail to solve the mechanical equilibrium equation and stops. Both n_{Recurs} and Δe are user adjustable (see Section 3) with recommended range of 100~2000 and 10⁻⁵~10⁻³, respectively. To speed up the iteration process, a solved strain distribution of the initial time step can be provided within input, and used as the starting approximation of the first iterative loop.

2.6 Magnetic exchange interaction

The density of magnetic exchange energy is given by

$$f_{\text{exch}} = A\left(\left(\nabla m_1\right)^2 + \left(\nabla m_2\right)^2 + \left(\nabla m_3\right)^2\right) = A\left(\nabla \mathbf{m}\right)^2$$
(16)

where A is the exchange constant in the unit of J/m.

The exchange field is expressed as

$$H_{\rm exch} = \frac{2A}{\mu_0 M_s} \nabla^2 \mathbf{m}$$
(17)

2.7 Dzyaloshinskii-Moriya interaction (DMI)

The DMI module in μ -Pro[®] Mag belongs to the interface type[9], which can be invoked when simulating an ultrathin magnetic thin film or island with perpendicular magnetic anisotropy. Consider a homogenous effective DMI constant *D*, the interface DMI energy density is given by $f_{\text{DMI}} = D(m_3 \nabla \mathbf{m} - \mathbf{m} \cdot \nabla m_3)$ (18)

The effective magnetic field due to DMI is therefore expressed as

$$H_{\rm DMI} = \frac{2D}{\mu_0 M_s} \left(\nabla m_3 - \mathbf{e}_3 \nabla \cdot \mathbf{m} \right) \tag{19}$$

where \mathbf{e}_3 is the unit vector along the x_3 direction.

2.8 Spin torque

The spin-orbit torque and Slonczewski spin-transfer torque are given by

$$\boldsymbol{\tau}_{\rm ST} = \frac{\tau_0}{1 + \alpha^2} \left(\mathbf{m} \times (\mathbf{m}_P \times \mathbf{m}) - \alpha \left(\mathbf{m}_P \times \mathbf{m} \right) \right)$$
(20)

where \mathbf{m}_{p} is the normalized fixed-layer magnetization in the case of spin-transfer torque, while represents the direction of spin current generated through Spin Hall Effect; and the pre-factor τ_{0} depends on the type of the spin torque.

For spin-orbit torque[10],

$$\tau_0 = \frac{\mu_B J \theta_{\rm SH}}{e dM_S} \tag{21}$$

where $\mu_B = 9.27400968 \times 10^{-24} \text{ A} \cdot \text{m}^2$ is the Bohr magneton, *J* is the electric current density, θ_{SH} is the spin Hall angle, $e = 1.6021766209 \times 10^{-19} \text{ C}$ is the elementary charge. *d* is the thickness of the free magnetization layer, as defined with the type of the system (see Table 2.1). For Slonczewski spin-transfer torque[11][12],

$$\tau_{0} = \frac{2\mu_{B}J}{edM_{S}} \left(-4 + \frac{\left(1 + \eta_{SP}\right)^{3} \left(3 + \mathbf{m} \cdot \mathbf{m}_{P}\right)}{4\eta_{SP}^{3/2}} \right)^{-1}$$
(22)

where $\eta_{\rm SP}$ is the spin polarization constant.

The effective field corresponding to spin-orbit torque or Slonczewski spin-transfer torque is given by

$$\mathbf{H}_{\rm ST} = \frac{\tau_0}{\gamma_0} \left(\mathbf{m} \times \mathbf{m}_P \right) \tag{23}$$

The Zhang-Li spin-transfer torque is given by[13]

$$\boldsymbol{\tau}_{\rm ST} = \frac{1}{1+\alpha^2} \frac{\mu_B}{2eM_S \left(1+\xi^2\right)} \left(\left(1+\xi\alpha\right) \mathbf{m} \times \left(\mathbf{M} \times \left(\mathbf{J} \cdot \nabla\right) \mathbf{m}\right) + \left(\xi-\alpha\right) \mathbf{m} \times \left(\mathbf{J} \cdot \nabla\right) \mathbf{m} \right)$$
(24)

where ξ is the degree of non-adiabaticity.

The effective field corresponding to a Zhang-Li spin-transfer torque is given by

$$\mathbf{H}_{\rm ST} = -\frac{\mu_B}{2e\gamma_0 M_s \left(1 + \xi^2\right)} \left(\left(\mathbf{m} \times \left(\mathbf{J} \cdot \nabla \right) \mathbf{m} \right) + \xi \left(\mathbf{J} \cdot \nabla \right) \mathbf{m} \right)$$
(25)

The energy density of a spin torque is given by

$$f_{\rm ST} = -\mu_0 M_S \mathbf{H}_{\rm ST} \cdot \mathbf{m} \tag{26}$$

2.9 Thermal fluctuation

The thermal fluctuation field is given by

$$\mathbf{H}_{\text{therm}} = \mathbf{\eta} \sqrt{\frac{2\alpha k_B T}{\mu_0 M_S \gamma_0 \Delta V \Delta t}}$$
(27)

where $k_B = 1.38064853 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ is the Boltzmann constant, *T* is the Kelvin temperature, $\Delta V = \Delta l_1 \times \Delta l_2 \times \Delta l_3$ is the volume of a grid, and **η** is a random vector with three independent components η_1 , η_2 , and η_3 all obeying standard normal distribution. Values of these three components are independent at each evolution step.

3 Input files

Users need to prepare one through five files as input:

3.1 parameterFormatted.in or alternatively parameter.in

Declares the size of the system, the type of properties considered, properties of each phase, and external fields applied. Users shall provide either *parameterFormatted.in* (fixed-format version) or *parameter.in* (free-format version). If both files are provided, only *parameter.in* will be adopted.

The format is as follows:

_		1 a.	
Da	ta in the f	ïle	Explanation
l_1	l_2	13	System real size along x ₁ , x ₂ , and x ₃ directions (nm)
n_1	n_2	n ₃	Total number of simulation grids along x ₁ , x ₂ , and x ₃ directions
ns	$n_{\rm f}$		See Section 2.1
C _{Island}			See Section 2.1
n _{i1}	n _{i2}	n _{i3}	See Section 2.1
C_{Grain}			Choice of crystalline grain structure: 0-Euler angles φ , θ , and ψ (°) array read from file <i>eulerAng.in</i> ; 1-single crystal with specified Euler angles
φ _C	$\theta_{\rm C}$	Ψc	(For $C_{\text{Grain}}=1$) Euler angles φ , θ , and ψ (°) of the single crystal orientation
Ms	γ	α	M_{s} – saturation magnetization (A/m); γ – electron gyromagnetic ratio (m/(A.s)); α – damping constant (unitless)
Fl _{Anis}			Flag of whether to consider magnetocrystalline anisotropy
CAnis			(For Fl _{Anis} =true) choice of type of magnetocrystalline anisotropy: 1-cubic; 2-uniaxial
K 1	K ₂	K ₃	(For Fl_{Anis} =true and C_{Anis} =1) K_1 , K_2 , K_3 – cubic magnetocrystalline anisotropy coefficient K (J/m ³); (For Fl_{Anis} =true and C_{Anis} =2) K_1 , K_2 – uniaxial magnetocrystalline anisotropy coefficient K (J/m ³)
Fl _{Stray}			Flag of whether to consider stray field
C _{MBC}			(For Fl _{stray} =true) choice of type of magnetostatic boundary condition: 1-finite-size; 2-periodic; 3-finite-size in-plane, periodic out-of-plane
N _{D11}	N _{D22}	N _{D33}	(For Fl_{strav} =true and C_{MBC} =2) demagnetizing factor N_D (unitless)
N _{D23}	N _{D13}	N _{D12}	
		1	

Table 3.1 Format of the input file *parameterFormatted.in*

			Choice of external magnetic field: 0-an array of field sequence read from file <i>hExt.in</i>
C			with possible linear interpolations: 1-DC and AC components defined in the following
CHext			three lines i.e. $\mathbf{H}_{-} = \mathbf{H}_{+} + \mathbf{H}_{-} \sin(2\pi f_{-} f_{-})$
			there miss, i.e., $\mathbf{H}_{ext} = \mathbf{H}_{DC} + \mathbf{H}_{AC} \sin(2\pi J_{AC} \cdot t)$
H _{DC1}	H _{DC2}	H _{DC3}	(For $C_{\text{Hext}}=1$) DC component of external magnetic field \mathbf{H}_{DC} (A/m)
H _{AC1}	H _{AC2}	H _{AC3}	(For $C_{Hext}=1$) magnitude of AC component of external magnetic field \mathbf{H}_{AC} (A/m)
f _{AC}			(For C _{Hext} =1) frequency of AC component of external magnetic field (Hz)
Fl _{Elas}			Flag of whether to consider magnetoelastic effect
λ_{100}	λ111		(For Fl _{Elas} =true) saturation magnetostriction λ (unitless)
C1'1'	C1'2'	C4'4'	(For Fl_{Elas} =true) elastic stiffness c of the magnet in Voigt notation (Pa)
			(For film or island, and Fl_{Elas} =true) elastic stiffness c_s of the substrate in Voigt notation
$c_{s1'1'}$	C _{s1'2'}	C _S 4'4'	(Pa)
a			(For bulk and Fl _{Elas} =true) choice of type of bulk elastic boundary condition: 1-applied
CEBC			external strain; 2-applied external stress
			(For Fl _{Eles} =true) choice of external strain/stress: 0-an array of strain/stress sequence read
CSext			from file <i>sExt.in</i> with possible linear interpolations: 2-static stress/strain defined in the
CBCAT			following two lines
			(For film or island F_{Elec} =true and C_{sort} =1) in-plane substrate strain \mathbf{r}_{sort} .
East11	East22	East12	(For bulk, $Fl_{Fl_{2}}$ =true, C_{FBC} =1, and C_{sout} =1) in-plane components of applied strains c_{max}
or	or	or	(initias):
σ	σ	σ	(For bulk El_{r_1} -true $C_{r_{r_2}}$ = 2 and C_{r_2} = 1) in-plane components of applied stress σ
Oextill	Oext22	Oext12	(1 of build, $1 \text{ H}_{\text{Elas}}$ - true, C_{EBC} - 2, and C_{Sext} - 1/ in plane components of applied sites σ_{ext} (Pa)
			(For hulk Fl_{r_1} -true C_{r_2} -1 and C_{r_2} -1) out-of-plane components of applied strains
Eext33	Eext13	Eext23	(1 of built, $1 = 1 = 1$ and $C_{Sext} = 1$) but of plane components of applied strains
or	or	or	c_{ext} (underso), (For bulk El., -true $C_{-} = 2$ and $C_{-} = 1$) out of plane components of applied stress
σ _{ext33}	σ_{ext13}	σ_{ext23}	(For burk, Γ_{Elas} -if the, C_{EBC} -2, and C_{Sext} -1) but-of-plane components of applied stress
			$\mathbf{O}_{\text{ext}}(\mathbf{r}a)$
			(For FiElas=true, and with infomogeneous elastic software) in the system) increase –
n _{Recurs}	Δe		(Ear El and with inhomogeneous electic stiffness in the system) As
			(For Figure 1 det and which informogeneous effastic suffices in the system) $\Delta e = \text{maximum}$
			(Ear El true and with inhome annous electic stiffered in the system) flog of whether
Fl _{InStra}			(For Fi_{Elas} =true, and with infomogeneous elastic sufficiences in the system) mag of whether to imput the only of strain distribution of the initial evolution step
			to input the solved strain distribution of the initial evolution step
•			$\mathbf{M}_{\mathbf{r}}$
A			Magnetic exchange energy coefficient (J/m)
FIDMI			Flag of whether to consider Dzyaloshinskii-Moriya interaction (DMI)
D			(For Fl _{DMI} =true) continuous effective DMI constant
F _{ST}			Flag of whether to consider spin torque
Сет			(For Flst=true) type of spin torque: 1-spin-orbit torque 2-Slonczewski spin-transfer
0.51			torque 3-Zhang-Li spin-transfer-torque
θ_{SH}			(For Fl_{ST} =true, and C_{ST} =1) spin Hall angle in a spin-orbit torque
т			(For Fl _{ST} =true, and C _{ST} =1 or 2) J – spin-polarized electric current density direction
J			(A/m^2)
m	m	m	(For Fl _{ST} =true, and C _{ST} =1 or 2) normalized magnetization \mathbf{m}_P in the fixed layer in a
m_{P1}	m_{P2}	m_{P3}	spin torque structure (unitless)
n			(For Flst=true, and Cst=2) spin polarization constant in a Slonczewski spin-transfer
IJSP			torque
ξstt			(For Flst=true, and Cst=3) degree of non-adiabaticity in a Zhang-Li spin-transfer torque
J_1	J_2	J_3	(For Fl _{sT} =true, and C _{sT} =3) J_1 , J_2 , J_3 – spin-polarized electric current density J (A/m ²)
		-	
Fl _{Therm}			Flag of whether to consider thermal fluctuation field
T			(For Fl _{Therm} =true) temperature (K)

C _{LLG}			Type of LLG numerical solver: 1-implicit Gauss-Seidel using Fourier spectral 2-explicit RK4
Δt			Time per evolution step (s)
k.	1		k_{t0} – number of the starting evolution step;
K _{t0}	KtMax		k _{tMax} – number of the finishing evolution step
1.	1-		k_{tTable} – output step interval for data table;
K tTable	K _{tDist}		k _{tDist} – output step interval for spatial distribution
			Choice of initial magnetization distribution: 0-an array of magnetization distribution
$C_{InitialM}$			read from file Magnt.in; 1-random orientation; 2-specified uniform orientation; 3-
			specified vortex domain
			(For C _{InitialM} =2) axis of a uniform orientation of the initial magnetization;
a_1	a_2	a ₃	(For $C_{InitialM}=3$) axis of a vortex of the initial magnetization
171	171		Fl _{OutH} – flag of whether to output distribution of effective fields
FlOutH	FIOutE		Fl _{OutE} – flag of whether to output distribution of energy densities
Fl _{OutS}			(For Fl _{Elas} =true) flag of whether to output distribution of eigenstrain, strain, and stress

Table 3.1.2 Format of the input	ut file <i>parameter.ir</i>	ı
---------------------------------	-----------------------------	---

Module	Identifier in the file	Data	followin	Default value				
	REALDIM	l_1	12	13				30
	SYSDIM	n_1	n ₂	n ₃				10
	SUBTHICK	ns						0
Size	FILMTHICK	n _f						0
	ISLANDTHICK	n _{i3}						0
	CHOICEINISLAND	CIsland						1
	ISLANDLENGTH	n _{i1}	n _{i2}					0
Crystal	CHOICEINGRAIN	C _{Grain}						1
Orientation	EULERANGLE	φc	θ_{C}	Ψc				0
	SATURATION	Ms						5×10^{5}
Spin	GYROMAG	γ						2.211×10^{6}
	DAMPING	α						0.5
	FLAGANI	Fl _{Anis}						false
Anisotropy	CHOICEANI	C _{Anis}						1
	ANISOTROPY	K ₁	K ₂	K ₃				0
	FLAGSTRAY	Fl _{Stray}						true
Stray	CHOICEMSTATBC	C _{MBC}						false
	DEMAGFACTOR	N _{D11}	N _{D22}	N _{D33}	N _{D23}	N _{D13}	N _{D12}	0
	CHOICEINFIELD	C _{Hext}						1
External	DCFIELD	H _{DC1}	H _{DC2}	H _{DC3}				0
Field	ACFIELD	H _{AC1}	H _{AC2}	H _{AC3}				0
	FIELDFREQ	f _{AC}						0
	FLAGELASTIC	Fl _{Elas}						false
	MAGSTRICTION	λ_{100}	λ_{111}					0
	STIFFNESS							$c_{1'1'}=1\times 10^{11}$
		c _{1'1'}	c _{1'2'}	C4'4'				$c_{1'2'}=4\times 10^{10}$
								$c_{4'4'}=3\times 10^{10}$
Flastic	SUBSTIFFNESS							$c_{s1'1'}=1\times 10^{11}$
Liastic		c _{s1'1'}	C _{s1'2'}	C ₈ 4'4'				$c_{s1'2'}=4\times10^{10}$
								$c_{s4'4'}=3\times10^{10}$
	CHOICEELABC	CEBC						1
	CHOICEINELAAPP	C _{Sext}						1
	ELAAPPINPLANE	Eext11	Eext22	Eext12				0
		or	or	or				

		σ _{ext11}	σ_{ext22}	σ_{ext12}		
	ELAAPPOUTPLANE	Eext33	Eext13	Eext23		0
		or	or	or		
		σ _{ext33}	σ _{ext13}	σ _{ext23}		
	ELARECURS	n _{Recurs}				1000
	ELATOLER	Δe				1×10 ⁻⁴
	FLAGINSTRAIN	Fl _{InStra}				false
Exchange	EXCHANGE	А				1×10 ⁻¹¹
DMI	FLAGDMI	Fl _{DMI}				false
DMI	DMI	D				0
	FLAGSPINTORQ	F _{ST}				false
	CHOICESPINTORQ	C _{ST}				1
	SPINHALLANGLE	θ_{SH}				0
Spin	ELECCURR	J				0
Torque	FIXEDMAG	m_{P1}	m_{P2}	m_{P3}		0
	SPINPOLAR	η_{SP}				0
	NONADIAB	ξstt				0
	ELECCURRZL	J ₁	J_2	J_3		0
Thomasl	FLAGTHERMAL	Fl _{Therm}				false
Thermal	TEMPERATURE	Т				298
	CHOICELLG	C _{LLG}				1
	TIMESTEP	Δt				1×10 ⁻¹³
	NTSTART	k _{t0}				0
Time	NTMAX	k _{tMax}				10000
Time	NTOUTTABLE	k _{tTable}				100
	NTOUTDIST	k _{tDist}				1000
	CHOICEINITMAG	C _{InitialM}				1
	INITMAG	a ₁	a_2	a ₃		$a_1 = a_2 = 0, a_3 = 1$
	FLAGOUTEFFFIELD	Fl _{OutH}				false
Output	FLAGOUTENERGY	Fl _{OutE}				false
_	FLAGOUTELASTIC	Flouts				false

Explanations of variables in Table 3.1.2 are the same as in Table 3.1.1, and are hence omitted.

3.2 *islandShape.in* (optional)

Contains an array $o_{m2d}(x_1, x_2)$ describing the 2-d in-plane shape of a magnetic island. This file is used only in an island-on-substrate or a finite-size magnet system with C_{Island}=0, as defined in the file *parameterFormatted.in*.

The format is as follows:

Data in the file			Explanation					
1	1	o _{m2d} (1, 1)	If $o_{m2d}(1, 1)=1$, grid points (1, 1, k) where k is within the thickness of the island are considered within the magnetic island, i.e., $o_m(1, 1, k)=1$. If $o_{m2d}(1, 1)=0$, grid points (1, 1, k) where k is within the thickness of the island are considered vacuum, i.e., $o_m(1, 1, k)=0$.					
:		:						
1	n ₂	$o_{m2d}(1, n_2)$						
:	:	:						
n_1	n_2	$o_{m2d}(n_1, n_2)$						

3.3 *eulerAng.in* (optional)

Contains an array of the distribution of the Euler angles $\varphi(\mathbf{x})$, $\theta(\mathbf{x})$, and $\psi(\mathbf{x})$ of grains in polycrystals, arranged in a row-major order. This file is used only with C_{Grain}=0, as defined in the file *parameterFormatted.in*.

The format is as follows:

			-			
			Data in	the file	Explanation	
n_1	n_2	n ₃				Total number of simulation grids in each direction
1	1	1	$\varphi(1, 1, 1)$	$\theta(1, 1, 1)$	ψ(1, 1, 1)	φ , θ , ψ – Euler angles of the grain containing the
						grid point (1, 1, 1) (°)
				:		
1	1	n ₃	$\phi(1, 1, n_3)$	$\theta(1, 1, n_3)$	$\psi(1, 1, n_3)$	
				:		
1	n ₂	n ₃	$\phi(1, n_2, n_3)$	$\theta(1, n_2, n_3)$	$\psi(1, n_2, n_3)$	
				:		
n_1	n ₂	n ₃	$\phi(n_1, n_2, n_3)$	$\theta(n_1, n_2, n_3)$	$\psi(n_1, n_2, n_3)$	

 Table 3.3 Format of the input file eulerAng.in

3.4 hExt.in (optional)

Contains an array of the external magnetic field sequence $\mathbf{H}_{ext}(k_t)$. This file is used only with C_{Hext}=0, as defined in the file *parameterFormatted.in*.

The format is as follows:

Table 3.4 Format of the input file *hExt.in*

Data in the file				Explanation		
n				Total number of following lines in this file		
k _{t1}	$H_{ext1}(k_{t1})$	$H_{ext2}(k_{t1})$	$H_{ext3}(k_{t1})$	$\mathbf{H}_{ext}(k_{t1})$ – external magnetic field \mathbf{H}_{ext} at the k_{t1} -th evolution step (A/m)		
k _{t2}	$H_{ext1}(k_{t2})$	$H_{ext2}(k_{t2})$	$H_{ext3}(k_{t2})$			
:	:	:	:			
k _{tn}	Hext1(ktn)	Hext2(ktn)	Hext3(ktn)			

In obtaining $\mathbf{H}_{ext}(k_t)$ at all evolution steps k_t , the program considers linear interpolations of $\mathbf{H}_{ext}(k_t)$ between adjacent evolution steps k_t provided in this file.

3.5 sExt.in (optional)

Contains an array of the applied external strain sequence $\varepsilon_{ext}(k_t)$, or stress sequence $\sigma_{ext}(k_t)$. This file is used only with Fl_{Elas}=true and C_{Sext}=0, as defined in the file *parameterFormatted.in*. For a bulk system, all 6 components of applied strain/stress needs to be provided in the file, while for a thin film or an island system, only 3 in-plane substrate strain components shall be provided.

			Explanation							
n							Total number of following lines in this			
							file			
k _{t1}	$\epsilon_{ext11}(k_{t1})$	$\epsilon_{ext22}(k_{t1})$	$\epsilon_{ext33}(k_{t1})$	$\epsilon_{ext23}(k_{t1})$	$\epsilon_{ext13}(k_{t1})$	$\epsilon_{ext12}(k_{t1})$	(For C _{EBC} =1) $\varepsilon_{ext}(k_{t1})$ – applied strain			
	or	or	or	or	or	or	$\mathbf{\epsilon}_{ext}$ at the k _{t1} -th evolution step			
	$\sigma_{ext11}(k_{t1})$	$\sigma_{ext22}(k_{t1})$	$\sigma_{ext33}(k_{t1})$	$\sigma_{ext23}(k_{t1})$	$\sigma_{ext13}(k_{t1})$	$\sigma_{ext12}(k_{t1})$	(For C _{EBC} =2) $\sigma_{ext}(k_{t1})$ – applied stress			
							$\boldsymbol{\sigma}_{ext}$ at the k _{t1} -th evolution step (Pa)			
k _{t2}	$\epsilon_{ext11}(k_{t2})$	$\epsilon_{ext22}(k_{t2})$	$\epsilon_{ext33}(k_{t2})$	$\epsilon_{ext23}(k_{t2})$	$\epsilon_{ext13}(k_{t2})$	$\epsilon_{ext12}(k_{t2})$:			
	or	or	or	or	or	or				
	$\sigma_{ext11}(k_{t2})$	$\sigma_{ext22}(k_{t2})$	$\sigma_{ext33}(k_{t2})$	$\sigma_{ext23}(k_{t2})$	$\sigma_{ext13}(k_{t2})$	$\sigma_{ext12}(k_{t2})$				
:				:	:	:	:			
k _{tn}	$\epsilon_{ext11}(k_{tn})$	$\epsilon_{ext22}(k_{tn})$	$\epsilon_{ext33}(k_{tn})$	ε _{ext23} (k _{tn})	ε _{ext13} (k _{tn})	$\epsilon_{ext12}(k_{tn})$:			
	or	or	or	or	or	or				
	$\sigma_{ext11}(k_{tn})$	$\sigma_{ext22}(k_{tn})$	$\sigma_{ext33}(k_{tn})$	$\sigma_{ext23}(k_{tn})$	$\sigma_{ext13}(k_{tn})$	$\sigma_{ext12}(k_{tn})$				

	The fo	ormat	is	as	fol	llows:
--	--------	-------	----	----	-----	--------

Table 3.5.1	Format of	the input	file sExt in	for a bulk system
1 abic 5.5.1	I Officiat Of	the input		101 a Duik System

Table 3.5.2 Format of the input file *sExt.in* for a thin film or an island system

	Data	a in the file		Explanation
n				Total number of following lines in this file
k _{t1}	$\epsilon_{ext11}(k_{t1})$	$\epsilon_{ext22}(k_{t1})$	$\epsilon_{ext12}(k_{t1})$	$\varepsilon_{ext11}(k_{t1})$, $\varepsilon_{ext22}(k_{t1})$, and $\varepsilon_{ext12}(k_{t1})$ – components of in-plane substrate strain ε_{ext} at the k_{t1} -th evolution step
k _{t2}	$\epsilon_{ext11}(k_{t2})$	$\epsilon_{ext22}(k_{t2})$	$\epsilon_{ext12}(k_{t2})$	
:	:	:	:	
k _{tn}	$\epsilon_{ext11}(k_{tn})$	$\epsilon_{ext22}(k_{tn})$	$\epsilon_{ext12}(k_{tn})$	

In obtaining $\mathbf{\epsilon}_{ext}(k_t)$ or $\mathbf{\sigma}_{ext}(k_t)$ at all evolution steps \mathbf{k}_t , the program considers linear interpolations of $\mathbf{\epsilon}_{ext}(k_t)$ or $\mathbf{\sigma}_{ext}(k_t)$ between adjacent evolution steps \mathbf{k}_t provided in this file.

3.6 *strain.in* (optional)

Contains an array of the distribution of initial strain $\varepsilon(\mathbf{x}, k_{t0})$, arranged in a row-major order. This file is used only with Fl_{Elas}=true and Fl_{InStra}=true, as defined in the file *parameterFormatted.in*, in a system with inhomogeneous elastic stiffness.

The format is as follows:

 Table 3.6 Format of the input file strain.in

	Data in the file								
n_1	n_2	n_3							Total number
									of simulation
									grids in each
									direction

1	1	1	$\epsilon_{11}(1,1,1)$	ε ₂₂ (1,1,1)	ε ₃₃ (1,1,1)	ε ₂₃ (1,1,1)	$\epsilon_{13}(1,1,1)$	$\epsilon_{12}(1,1,1)$	ε – Normalized initial strain ε at grid point (1,1,1)
					:				:
1	1	n ₃	$\epsilon_{11}(1,1,n_3)$	$\epsilon_{22}(1,1,n_3)$	$\epsilon_{33}(1,1,n_3)$	$\epsilon_{23}(1,1,n_3)$	$\epsilon_{13}(1,1,n_3)$	$\epsilon_{12}(1,1,n_3)$:
					:				:
1	n ₂	n ₃	$\epsilon_{11}(1, n_2, n_3)$	$\epsilon_{22}(1, n_2, n_3)$	$\epsilon_{33}(1, n_2, n_3)$	$\epsilon_{23}(1, n_2, n_3)$	$\epsilon_{13}(1, n_2, n_3)$	$\epsilon_{12}(1, n_2, n_3)$:
					:				:
n_1	n ₂	n ₃	$\epsilon_{11}(n_1, n_2, n_3)$	$\epsilon_{22}(n_1, n_2, n_3)$	$\epsilon_{33}(n_1, n_2, n_3)$	$\epsilon_{23}(n_1, n_2, n_3)$	$\epsilon_{13}(n_1, n_2, n_3)$	$\epsilon_{12}(n_1, n_2, n_3)$:

3.7 magnt.in (optional)

Contains an array of the distribution of initial magnetization $\mathbf{m}(\mathbf{x}, k_{t0})$, arranged in a row-major order. This file is used only with C_{InitialM}=0, as defined in the file *parameterFormatted.in*.

The format is as follows:

			Data in	the file	Explanation	
n_1	n ₂	n ₃				Total number of simulation grids in each direction
1	1	1	$m_1(1, 1, 1)$	$m_2(1, 1, 1)$	$m_3(1, 1, 1)$	m – Normalized initial magnetization m at grid
						point (1,1,1) (unitless)
				:		:
1	1	n ₃	$m_1(1, 1, n_3)$	$m_2(1, 1, n_3)$	$m_3(1, 1, n_3)$:
				:		:
1	n ₂	n ₃	$m_1(1, n_2, n_3)$	$m_2(1, n_2, n_3)$	$m_3(1, n_2, n_3)$:
				:		
n ₁	n ₂	n ₃	$m_1(n_1, n_2, n_3)$	$m_2(n_1, n_2, n_3)$	$m_3(n_1, n_2, n_3)$	

4 Ouput files

4.1 Files generated before doing evolution

oMag.0000000.dat

Contains an array of $o_m(\mathbf{x})$ (unitless), arranged in a row-major order. The data follow a similar format with those in *magnt.in*. The file is generated before simulating evolution steps.

cGlob.0000000.dat (optional)

Contains an array of $c_{11}(\mathbf{x})$, $c_{22}(\mathbf{x})$, and $c_{44}(\mathbf{x})$ (Pa) in Voigt notation, arranged in a row-major order. The data follow a similar format with those in *magnt.in*. The file is generated before simulating evolution steps and only under Fl_{Elas}=true.

hExt.dat

Contains an array of the external magnetic field sequence $H_{\text{ext1}}(k_t)$, $H_{\text{ext2}}(k_t)$, and $H_{\text{ext3}}(k_t)$ (A/m) at all evolution steps. The data follow a similar format with those in *hExt.in*. The file is generated before simulating evolution steps.

sExt.dat

Contains an array of the sequence of applied strain $\varepsilon_{ext11}(k_t)$, $\varepsilon_{ext22}(k_t)$, $\varepsilon_{ext33}(k_t)$, $\varepsilon_{ext23}(k_t)$, $\varepsilon_{ext23}(k_t)$, $\varepsilon_{ext23}(k_t)$, $\varepsilon_{ext23}(k_t)$, $\varepsilon_{ext23}(k_t)$, $\varepsilon_{ext23}(k_t)$, $\sigma_{ext23}(k_t)$, $\sigma_{ext23}(k_t)$, $\sigma_{ext23}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext23}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext23}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext23}(k_t)$, $\sigma_{ext13}(k_t)$, $\sigma_{ext13}(k_$

4.2 Files generated during evolution steps

avMagntz.dat

Contains an array of average values of the normalized magnetization $\overline{m_1}(k_t)$, $\overline{m_2}(k_t)$, and $\overline{m_3}(k_t)$ (unitless) inside the magnet at every k_{tTable} evolution steps. The data follow a similar format with those in *hExt.in*. The file is updated every k_{tTable} steps.

avHEff.dat

Contains an array of average values of the effective fields $H_{\text{ext1}}(k_t)$, $H_{\text{ext2}}(k_t)$, $H_{\text{ext3}}(k_t)$, $\overline{H_{\text{eff3}}}(k_t)$, $\overline{H_{\text{eff3}}}(k_t)$, $\overline{H_{\text{stray1}}}(k_t)$, $\overline{H_{\text{stray2}}}(k_t)$, $\overline{H_{\text{stray3}}}(k_t)$, $\overline{H_{\text{anis1}}}(k_t)$, $\overline{H_{\text{anis2}}}(k_t)$, $\overline{H_{\text{anis3}}}(k_t)$, $\overline{H_{\text{anis4}}}(k_t)$, $\overline{H$

avEnergy.dat

Contains an array of average values of the energy densities $\overline{f}(k_t)$, $\overline{f_{ext}}(k_t)$, $\overline{f_{stray}}(k_t)$, $\overline{f_{anis}}(k_t)$, $\overline{f_{eas}}(k_t)$, $\overline{f_{exch}}(k_t)$, $\overline{f_{DMI}}(k_t)$, and $\overline{f_{ST}}(k_t)$ (J/m³) inside the magnet at every k_{tTable} evolution steps. The data follow a similar format with those in *hExt.in*. The file is updated every k_{tTable} steps.

avStrain.dat (optional)

Contains an array of average values of the strain and eigenstrain $\overline{\varepsilon_{11}}(k_t)$, $\overline{\varepsilon_{22}}(k_t)$, $\overline{\varepsilon_{33}}(k_t)$, $\overline{\varepsilon_{23}}(k_t)$, $\overline{\varepsilon_{13}}(k_t)$, $\overline{\varepsilon_{12}}(k_t)$, $\overline{\varepsilon_{11}}(k_t)$, $\overline{\varepsilon_{22}}(k_t)$, $\overline{\varepsilon_{23}}(k_t)$, $\overline{\varepsilon_{23}}(k_t)$, $\overline{\varepsilon_{13}}(k_t)$, $\overline{\varepsilon_{12}}(k_t)$, $\overline{\varepsilon_{11}}(k_t)$, $\overline{\varepsilon_{22}}(k_t)$, $\overline{\varepsilon_{23}}(k_t)$, $\overline{\varepsilon_{23}}(k_t)$, $\overline{\varepsilon_{13}}(k_t)$, and $\overline{\varepsilon_{12}}(k_t)$ (unitless) inside the magnet at every k_{tTable} evolution steps. The data follow a similar format with those in *hExt.in*. The file is updated every k_{tTable} steps, and only under Fl_{Elas}=true.

avStress.dat (optional)

Contains an array of average values of the stress $\overline{\sigma_{11}}(k_t)$, $\overline{\sigma_{22}}(k_t)$, $\overline{\sigma_{33}}(k_t)$, $\overline{\sigma_{23}}(k_t)$, $\overline{\sigma_{13}}(k_t)$, and $\overline{\sigma_{12}}(k_t)$ (Pa) inside the magnet at every k_{tTable} evolution steps. The data follow a similar format with those in *hExt.in*. The file is updated every k_{tTable} steps, and only under Fl_{Elas}=true.

magnt.**.dat

Contains an array of $m_1(\mathbf{x})$, $m_2(\mathbf{x})$, and $m_3(\mathbf{x})$ (unitless) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps.

hEff.**.dat (optional)

Contains an array of $H'_{eff1}(\mathbf{x})$, $H'_{eff2}(\mathbf{x})$, and $H'_{eff3}(\mathbf{x})$ (A/m) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{OutH}=true.

hStra.**.*dat* (optional)

Contains an array of $H_{\text{strayl}}(\mathbf{x})$, $H_{\text{stray2}}(\mathbf{x})$, and $H_{\text{stray3}}(\mathbf{x})$ (A/m) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{OutH}=true and Fl_{Stray}=true.

hAnis.**.dat (optional)

Contains an array of $H_{anis1}(\mathbf{x})$, $H_{anis2}(\mathbf{x})$, and $H_{anis3}(\mathbf{x})$ (A/m) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{OutH} =true and Fl_{Anis} =true.

hElas.**.dat (optional)

Contains an array of H_{elas1} , H_{elas2} , and H_{elas3} (A/m) at a certain evolution step, arranged in a rowmajor order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{OutH}=true and Fl_{Elas}=true.

hST.**.dat (optional)

Contains an array of $H_{ST1}(\mathbf{x})$, $H_{ST2}(\mathbf{x})$, and $H_{ST3}(\mathbf{x})$ (A/m) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{OutH}=true and Fl_{ST}=true.

*hTher.***.*dat* (optional)

Contains an array of $H_{\text{therm1}}(\mathbf{x})$, $H_{\text{therm2}}(\mathbf{x})$, and $H_{\text{therm3}}(\mathbf{x})$ (A/m) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{OutH} =true and Fl_{Therm} =true.

eigStn.**.dat (optional)

Contains an array of $\varepsilon_{11}^0(\mathbf{x})$, $\varepsilon_{22}^0(\mathbf{x})$, $\varepsilon_{33}^0(\mathbf{x})$, $\varepsilon_{23}^0(\mathbf{x})$, $\varepsilon_{13}^0(\mathbf{x})$, and $\varepsilon_{12}^0(\mathbf{x})$ (unitless) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Flouts=true and Fl_{Elas}=true.

strain.**.dat (optional)

Contains an array of $\varepsilon_{11}(\mathbf{x})$, $\varepsilon_{22}(\mathbf{x})$, $\varepsilon_{33}(\mathbf{x})$, $\varepsilon_{23}(\mathbf{x})$, $\varepsilon_{13}(\mathbf{x})$, and $\varepsilon_{12}(\mathbf{x})$ (unitless) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{outs}=true and Fl_{Elas}=true.

stress.**.dat (optional)

Contains an array of $\sigma_{11}(\mathbf{x})$, $\sigma_{22}(\mathbf{x})$, $\sigma_{33}(\mathbf{x})$, $\sigma_{23}(\mathbf{x})$, $\sigma_{13}(\mathbf{x})$, and $\sigma_{12}(\mathbf{x})$ (Pa) at a certain evolution step, arranged in a row-major order, where ** represents the 8-digit evolution step number. The data follow a similar format with those in *magnt.in*. A file is generated every k_{tDist} steps and only under Fl_{outs}=true and Fl_{Elas}=true.

5 Examples

5.1 µMag Standard Problem #1

 μ Mag Standard Problem #1 considers the M-H hysteresis loop of a 1μ m × 2μ m × 20nm permalloy rectangle with the following material parameters: M_S = 8×10⁵ A/m $A = 1.3 \times 10^{-11} \text{ J/m}$ $K_1 = 5 \times 10^2 \text{ J/m}^3$ (Uniaxial anisotropy) on applying a magnetic field approximately parallel to the long and short axis of the magnet.

The solution using μ -Pro[®] Mag is presented in the following figures. Since submitted solutions on the μ Mag website don't agree with each other, the correctness of the solution couldn't be tested.

Figure 5.1.1 M-H hysteresis loop on applying a magnetic field parallel to the long axis (H // x_1) and the short axis (H // x_3), respectively.

Figure 5.1.2 Remnant magnetic domain configuration on applying a magnetic field parallel to the long axis (left) and the short axis (right), respectively.

5.2 µMag Standard Problem #2

 μ Mag Standard Problem #2 considers the scaling effect on remnant magnetization m_R and coercive field H_C of a magnet with the size of 5d × d × 0.1d, i.e., m_R and H_C as a function of d/l_{ex} , with exchange length $l_{ex} = sqrt(A/K_m)$, where K_m is the magnetostatic energy density defined as $K_m = \frac{1}{2} \mu_0 M_S^2$. The magnetic field is applied in the [1,1,1] direction.

The solution using μ -Pro[®] Mag is presented in the following figures. The remnant magnetization agrees well with Streibl and Donahue's solution submitted to the μ Mag group[14].

Figure 5.2.1 Remnant magnetization m_{x-R} as a function of d/l_{ex} .

Figure 5.2.2 Remnant magnetization m_{y-R} as a function of d/l_{ex} .

Figure 5.2.3 Coercive field H_C as a function of d/l_{ex} .

5.3 µMag Standard Problem #3

 μ Mag Standard Problem #3 models the transition of the stable magnetic domain structure from a flower state to a vortex state on increasing size of a magnet. A cubic magnet with edge length L expressed in units of exchange length $l_{ex} = sqrt(A/K_m)$, where K_m is the magnetostatic energy density defined as $K_m = \frac{1}{2} \mu_0 M_S^2$, is considered. The magnet has a uniaxial magnetocrystalline anisotropy with $K_u = 0.1 K_m$ and easy axis parrellel to the principle axis x_3 of the cube.

Flower and vortex state domains simulated using μ -Pro[®] Mag is plotted. Transition size, corresponding average magnetization, and energy densities are listed and compared with solutions submitted to the μ Mag group[14].

Figure 5.3 Stable flower state (left) and vortex state (right) magnetic domain structure in cubic magnet with $L/l_{ex} = 8.40$ and $L/l_{ex} = 8.50$, respectively.

Table 5.3 Transition size,	average magnetization,	, and energy densiti	es in the Flower	and vortex
	structures, in µMag St	andard Problem #3		

	Length	Flower State			Vortex State				
	L/I _{ex}	<m_x3></m_x3>	$< f_{Demag} >$	$< f_{Exch} >$	<f<sub>Ani></f<sub>	<m></m>	$< f_{Demag} >$	$< f_{Exch} >$	<f<sub>Ani></f<sub>
μ-Pro [®] Mag	8.46	0.97	0.2793	0.0177	0.0057	0.3543	0.0801	0.1703	0.0522
Rave[14]	8.46	0.971	0.2794	0.0177	0.0056	0.352	0.0783	0.1723	0.0521
Martins[14]	8.47	0.971	0.2792	0.0177	0.0056	0.3516	0.078	0.1724	0.0521
Hertel & Kronmüller[14]	8.52	0.973	0.2839	0.0158	0.0052	0.351	0.083	0.1696	0.0522

5.4 µMag Standard Problem #4

 μ Mag Standard Problem #4 considers the magnetization dynamics in a of a 500nm × 125nm × 3nm permalloy magnet. The magnet is first relaxed to a equilibrium state by applying a saturating magnetic field along the [1, 1, 1] direction, which is then slowly reduced to zero. A magnetic field is further applied to reverse the magnetization, where the magnetization dynamics is assessed. The following material parameters are adopted:

$$\begin{split} M_S &= 8 \times 10^5 \text{ A/m} \\ A &= 1.3 \times 10^{-11} \text{ J/m} \\ K &= 0 \\ \alpha &= 0.02 \\ \gamma_0 &= 2.211 \times 10^5 \text{ m/(A.s)} \\ \text{Two switching events with different magnetic fields are considered:} \end{split}$$

Field (1): $\mu_0 H_x = -24.6 \text{ mT}$, $\mu_0 H_y = 4.3 \text{ mT}$, $\mu_0 H_z = 0.0 \text{ mT}$, which is approximately a 25mT field directly 170° counterclockwise from the positive x axis.

Field (2): $\mu_0 H_x = -35.5 \text{ mT}$, $\mu_0 H_y = -6.3 \text{ mT}$, $\mu_0 H_z = 0.0 \text{ mT}$, which is approximately a 36mT field directly 190° counterclockwise from the positive x axis.

Time sequence of magnetization during switching is modeled using μ -Pro[®] Mag. Results from both the implicit Gauss-Seidel projection method and the Runge Kutta method (RK4) for solution of the LLG equation are shown, both of which agree well with solutions submitted to the μ Mag group[14].

Figure 5.4.1 Initial magnetization distribution.

Figure 5.4.2 Time sequence of average magnetization on applying field (1).

Figure 5.4.3 Time sequence of average magnetization on applying field (2).

5.5 µMag Standard Problem #5

 μ Mag Standard Problem #5 considers effect the Zhang-Li spin-transfer-torque. A spin-polarized electric current of $j=10^{12}$ A/m along x₁ direction is applied to $100nm \times 100nm \times 10nm$ permalloy magnet with an initial vortex structure. The following parameters are adopted: $M_S = 8 \times 10^5$ A/m $A = 1.3 \times 10^{-11}$ J/m K = 0 $\alpha = 0.1$ $\gamma_0 = 2.211 \times 10^5$ m/(A.s)

The obtained magnetic vortex structure and time-dependent average magnetization is shown below. It agrees well with the OOMMF solution.

Figure 5.5.1 Initial vortex structure (left) and the vortex structure after applying the current for 5ns (right).

Figure 5.5.2 Time-dependent average magnetization under the applied electric current.

5.6 Strain-induced domain pattern in thin film

This example considers the relaxed magnetic domain structure of a 100nm-thick nickel thin film. The nickel is considered isotropic (no magnetocrystalline anisotropy), with the following parameters adopted:

$$\begin{split} &M_S = 4.85 \times 10^5 \text{ A/m} \\ &A = 8.2 \times 10^{-12} \text{ J/m} \\ &K = 0 \\ &\alpha = 0.3 \\ &\gamma_0 = 2.42 \times 10^5 \text{ m/(A.s)} \\ &\lambda_{100} = \lambda_{111} = -32.9 \times 10^{-6} \\ &c_{11} = 246.5 \text{ GPa} \\ &c_{12} = 147.3 \text{ GPa} \\ &c_{44} = 49.6 \text{ GPa} \\ &\text{The substrate is assumed to possess an elastic stiffness equal to the thin film magnet. The effect of biaxial substrate mismatch strains <math>\epsilon_S (= \epsilon_{11} = \epsilon_{22})$$
 are investigated.

The obtained equilibrium magnetization distribution at $\varepsilon_S = 0.003$ and $\varepsilon_S = 0.004$ are shown below. The out of plane component of the magnetization is measured by calculating $\langle m_3^2 \rangle$ averaged throughout the sample, which shows a trend to increase with increasing ε_S .

Figure 5.6.1 Equilibrium magnetization distribution, which shows striped out-of-plane domains with Neel type domain walls at $\varepsilon_S = 0.004$, and a similar structure with relatively smaller out-of-plane component at $\varepsilon_S = 0.003$.

Figure 5.6.2 Average out-of-plane magnetization component $\langle m_3^2 \rangle$ of the equilibrium magnetization as a function of substrate strain ε_S . It shows that $\langle m_3^2 \rangle$ increases with increasing ε_S and dominates at $\varepsilon_S > 0.004$.

5.7 DMI

This is an example following the calculations in Ref. 15. It studies the transition of a Bloch wall to a Neel wall on increasing coefficient D of DMI, in a 300nm \times 500nm \times 0.6nm magnet with the following parameters adopted:

$$\begin{split} M_S &= 1.1 \times 10^6 \text{ A/m} \\ A &= 1.6 \times 10^{-11} \text{ J/m} \\ K_1 &= 1.27 \times 10^6 \text{ J/m}^3 \text{ (Uniaxial anisotropy)} \end{split}$$

The obtained magnetic domain wall moments (the integrated magnetization m across the domain wall $\Phi_i = \int_{\text{across domain wall}} m_i dx_1$) as a function of D are shown below. It agrees well with the solutions given by $q - \Phi$ model[15] and MUMAX3[16].

Figure 5.7.1 Simulated magnetization distribution across the domain wall.

Figure 5.7.2 Simulated domain wall moments as a function of D.

5.8 Polycrystalline magnet

This example demonstrates the magnetic domain structure in a single crystal or polycrystalline 850nm (minor axis) \times 2200nm (major axis) \times 5nm (thickness) elliptical cylinder permalloy island with the following parameters adopted:

 $M_{\rm S} = 8.0 \times 10^5 \, {\rm A/m}$

 $A = 1.3 \times 10^{-11} \text{ J/m}$

Cubic magnetocrystalline anisotropy with different K_1 are used and compared with each other.

Figure 5.8 Simulated magnetization distribution in polycrystal and single crystal islands with different K_1 .

5.9 Thermal fluctuation

This example tests the mean magnetization of a $(10nm)^3$ magnet with uniaxial magnetocrystalline anisotropy, which changes over time due to thermal fluctuation. The following parameters are adopted:

 $M_{\rm S} = 1.0 \times 10^6 \ {\rm A/m}$

 $K_1 = 1.0 \times 10^4 \text{ J/m}^3$ (Uniaxial anisotropy)

T = 100 K

Effects of stray field and exchange interaction are neglected. A simulation system consisting of $256 \times 256 \times 1$ grid points with the size of $(10\text{nm})^3$, which are independent from each other, is used to model the statistical mean.

The time-dependent average magnetization is modeled, which agrees well with the solution from MUMAX3.

Figure 5.9 Simulated average magnetization sequence over time, compared with solution from MUMAX3.

References

- [1] X.-P. Wang, C. J. García-Cervera, and W. E, "A Gauss–Seidel Projection Method for Micromagnetics Simulations," *J. Comput. Phys.*, vol. 171, no. 1, pp. 357–372, Jul. 2001.
- [2] L.-Q. Chen and J. Shen, "Applications of semi-implicit Fourier-spectral method to phase field equations," *Comput. Phys. Commun.*, vol. 108, no. 2–3, pp. 147–158, 1998.
- J. Zhang and L.-Q. Chen, "Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials," *Acta Mater.*, vol. 53, no. 9, pp. 2845–2855, May 2005.
- [4] K. Fabian and A. Kirchner, "Three-dimensional micromagnetic calculations for magnetite using FFT," *Geophys. J.* ..., pp. 89–104, 1996.
- [5] Y. Li, S. Y. Hu, Z.-K. Liu, and L.-Q. Chen, "Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films," *Acta Mater.*, vol. 50, pp. 395–411, 2002.
- [6] S. Y. Hu and L.-Q. Chen, "A phase-field model for evolving microstructures with strong elastic inhomogeneity," *Acta Mater.*, vol. 49, no. 11, pp. 1879–1890, Jun. 2001.
- [7] A. G. Khachaturyan, *Theory of Structural Transformation in Solids*. New York: Wiley, 1983.
- [8] J.-M. Hu, T. N. Yang, L.-Q. Chen, and C.-W. Nan, "Engineering domain structures in

nanoscale magnetic thin films via strain," J. Appl. Phys., vol. 114, no. 16, p. 164303, 2013.

- [9] S. Rohart and A. Thiaville, "Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction," *Phys. Rev. B Condens. Matter Mater. Phys.*, vol. 88, no. 18, pp. 1–8, 2013.
- [10] G. Finocchio, M. Carpentieri, E. Martinez, and B. Azzerboni, "Switching of a single ferromagnetic layer driven by spin Hall effect," *Appl. Phys. Lett.*, vol. 102, no. 21, 2013.
- [11] J. C. Slonczewski, "Current-driven excitation of magnetic multilayers," J. Magn. Magn. Magn. Mater., vol. 159, no. 1–2, pp. L1–L7, Jun. 1996.
- [12] L. Torres, L. Lopez-Diaz, E. Martinez, M. Carpentieri, and G. Finocchio, "Micromagnetic computations of spin polarized current-driven magnetization processes," J. Magn. Magn. Mater., vol. 286, no. SPEC. ISS., pp. 381–385, 2005.
- [13] S. Zhang and Z. Li, "Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets," *Phys. Rev. Lett.*, vol. 93, no. 12, pp. 1–4, 2004.
- [14] http://www.ctcms.nist.gov/~rdm/mumag.org.html
- [15] A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, "Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films," *EPL*, vol. 100, no. 5, pp. 57002, 2012.
- [16] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, "The design and verification of MuMax3," *AIP Adv.*, vol. 4, no. 10, pp. 0– 22, 2014.